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It is shown by direct numerical simulation that the preferential concentration of
small heavy particles in homogeneous isotropic developed turbulence has a self-
similar multi-scale nature when the particle relaxation time is within the inertial
time scales of the turbulence. This is shown by the pair correlation function of
the particle distribution extending over the entire inertial range, and the probability
density function of the volumes of particle voids taking a power-law form. This
self-similar multi-scale nature of particle clustering cannot be explained only by the
centrifugal effect of the smallest-scale (i.e. the Kolmogorov scale) eddies, but also by
the effect of co-existing self-similar multi-scale coherent eddies in the turbulence at
high Reynolds numbers. This explanation implies that the preferential concentration
of particles takes place even when the relaxation time of particles is much larger
than the Kolmogorov time, provided it is smaller than the longest time scale of the
turbulence, since even the largest-scale eddies bring about particle clustering.

1. Introduction
The behaviour of small heavy particles in turbulence is investigated. This problem

is ubiquitous in various systems such as droplet growth in atmospheric turbulence
(Vaillancourt & Yau 2000), planet formation due to dust condensation in nebula
turbulence (Cuzzi et al. 2001), industrial applications using powder, and so on,
and therefore it has been investigated extensively by many authors from various
perspectives (Maxey 1987; Eaton & Fessler 1994; Kostinski & Shaw 2001; Balkovsky,
Falkovich & Fouxon 2001; Bec 2003, 2005; Falkovich & Pumir 2004; Duncan et al.
2005; Chen, Goto & Vassilicos 2006; Cencini et al. 2006, and references therein).
It is well known, from direct numerical simulations (see the seminal work by
Squires & Eaton 1991, for example) and laboratory experiments (see for example
Yang & Shy 2005), that heavy small inertial particles distribute inhomogeneously
even in statistically homogeneous turbulence. This preferential concentration of
inertial particles plays a crucial role, for example, in the growth of droplets in clouds
because the concentration is likely to lead to the enhancement of their collision
rate and consequently their rate of coagulation. This preferential concentration has
been explained by the role of coherent vortical structures in homogeneous turbulence
(Wang & Maxey 1993); that is, heavy particles tend to be swept out of intense eddies
due to centrifugal effects, and accumulate along the outer peripheries of eddies. Recall
that even in homogeneous turbulence there exist coherent tubular eddies with radius
of (see e.g. Goto & Kida 2003, and figure 6(b) below).

However, as recently pointed out (Boffetta, De Lillo & Gamba 2004; Goto &
Vassilicos 2006) for particle clustering in two-dimensional turbulence, we cannot
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ignore the effect of the self-similar multi-scale nature of coherent eddies in
developed turbulence on particle clustering. Consequently, particle clustering becomes
statistically self-similar, and, in contrast to the conventional belief, the preferential
concentration is not necessarily most significant when the Stokes number (defined
by (2.2) below) is around 1, i.e. when the typical time scale τp of inertial particles is
comparable with the time scale of the Kolmogorov-scale eddies. One purpose of the
present article is to show that the above conclusion for developed two-dimensional
turbulence is also valid for particle clustering in three-dimensional turbulence: the
preferential concentration takes place even when the Stokes number is larger than
1 in high Reynolds number turbulence, and it has a self-similarity reflecting the
self-similarity of coherent eddies.

2. Model of small heavy particle motion
It is not trivial to describe the interaction between a particle and its surrounding

fluid even if we assume that the particle is a rigid sphere. We employ the simplest
equation of motion for a small heavy particle (Maxey & Riley 1983),

d

dt
vp(t) =

1

τp

(u(xp(t), t) − vp(t)) (2.1)

where xp(t) and vp(t) respectively stand for the position and the velocity of a particle
at time t , and u(x, t) is the velocity field of the surrounding fluid at position x.
We investigate the case that u(x, t) is statistically homogeneous isotropic stationary
turbulence of an incompressible fluid. In the derivation of (2.1), we assume that (i) the
radius a of a spheric particle is small so that the fluid motion around the particle
can be approximated by the Stokes flow, (ii) a is much smaller than the Kolmogorov
length of the surrounding turbulence, (iii) the mass density ρ ′ of the particle is much
larger than the fluid density, (iv) gravity is ignored. Furthermore, we assume that
inertial particles are sufficiently dilute for particle collisions and the feedback of
particle motion to fluid motion to be neglected.

The parameter τp (= 2ρ ′a2/(9µ) where µ is the fluid viscosity) in (2.1) stems from
the Stokes drag coefficient of a sphere, and expresses the relaxation time of the
velocity difference u − vp . When τp is much larger than the longest time scale, i.e. the
integral time T, of the turbulence, such inertial particles are so inert that their motion
may become independent of the fluid motion. On the other hand, when τp is smaller
than the shortest time scale, i.e. the Kolmogorov time τη, of the turbulence, particle
velocity relaxes quickly to the fluid velocity. Hence, in both the large and small τp

limits, the preferential concentration of particles cannot be observed. In developed
turbulence (note that T/τη ∼ Rλ, the Taylor-length Reynolds number), there exist
many time scales continuously between τη and T. Therefore, as will be seen in § 4 in
detail, particle clustering is always observed when τη � τp � T, or equivalently when
the normalized particle relaxation time

Sη = τp/τη (2.2)

is between O(1) and O(T/τη). Sη is called the Stokes number.

3. Direct numerical simulation
The turbulent velocity field u(x, t) is numerically simulated by solving the Navier–

Stokes equation, (
∂

∂t
+ u · ∇

)
u = − 1

ρ
∇ p + ν ∇2 u + f (3.1)
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N 3 Rλ L T η τη

Run A 1283 60.0 ± 1.6 1.61 ± 0.07 2.17 ± 0.10 (2.64 ± 0.04) × 10−2 (1.40 ± 0.04) × 10−1

Run B 5123 188 ± 6 1.87 ± 0.09 2.38 ± 0.10 (5.55 ± 0.05) × 10−3 (4.89 ± 0.10) × 10−2

Table 1. Statistics of the simulated turbulence. Rλ, Taylor-length Reynolds number;
L integral length; T, integral time; η, Kolmogorov length; τη , Kolmogorov time.
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Figure 1. (a–c) Temporal evolution of inertial particles (white dots) of Sη = 2 inside a thin
layer (side length 3.4L ≈ 1100η, width 5η) at (a) t ≈ 5τη ≈ 0.11T, (b) 10τη ≈ 0.22T and
(c) 50τη ≈ 1.1T. Run B. A movie is available with the online version of the paper. (d) Temporal
evolution of the total volume (normalized by the whole domain volume) of particle voids.

and the equation of continuity, ∇ · u = 0, of an incompressible fluid. Here, p(x, t),
ρ and ν are the pressure field, constant density and kinematic viscosity, respectively.
Periodic boundary conditions are imposed for three orthogonal directions, and we
employ the Fourier spectral method to evaluate spatial derivatives. The fourth-order
Runge–Kutta method is used for the time integration of (3.1). External forcing f is
implemented by fixing the amplitudes of Fourier modes in a low-wavenumber region.
Using 1283 and 5123 numerical grids we simulate turbulence at the Taylor-length
Reynolds numbers Rλ = 60.0 and 188, respectively. Here, Rλ =

√
20/(3νε) E, where E

and ε are the energy per unit mass and its dissipation rate. Statistics of the simulated
turbulence are listed in table 1, where L ≡ u′3/ε and T ≡ L/u′ (here u′ ≡

√
2E/3

is the r.m.s. value of a velocity component) are respectively integral length and time,
and η ≡ ε−1/4ν3/4 and τη ≡ ε−1/2ν1/2 are respectively the Kolmogorov length and time.

The motions of inertial particles are simulated simultaneously with the fluid motion
by solving (2.1) using the fourth-order Runge–Kutta method. We track Np = (N/2)3

particles in a simulation for figures 1(a–c), 2 and 3, and Np = N3 particles for fig-
ures 1(d), 5(b), 6 and 7. For figures 4, 5(a) and 9, we track up to Np = (6N)3 ≈ 4.5×108

particles in Run A to check the independence of particle cluster statistics of Np . We
simulated particles of eight different Stokes numbers (Sη = 0.05, 0.1, 0.2, 0.5, 1, 2, 5
and 10) for each Reynolds number. The initial positions of particles are distributed
homogeneously.

4. Self-similar clustering of inertial particles
4.1. Formation of clusters and voids of particles

Figure 1(a–c) shows a temporal evolution of inertial particles of Sη = 2 in turbulence
at Rλ = 188. The time elapsed in (a) to (c) is 5τη ≈ 0.11T, 10τη ≈ 0.22T and 50τη ≈
1.1T. Only the particles in a thin layer (width 5η, and side length 3.4L ≈ 1100η) are
plotted. After a duration of O(T), inertial particles form clusters and empty regions
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Figure 2. Spatial distribution of particles inside a thin layer (width 5η) for eight different
Stokes numbers. The side length of plots is 3.4L ≈ 1100η. t ≈ 2.1T ≈ 100τη . Run B. (a) Sη =
0.05, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1, (f) 2, (g) 5 and (h) 10.

(voids). An important observation from these figures is that the clustering of particles
is not well developed after only a few Kolmogorov times, but it saturates after the
duration as long as the integral time T. To show this quantitatively, we plot the
temporal evolution of the total volume of voids of particles in figure 1(d). See § 4.3
for the identification method of particle voids. It is clearly observed in this figure
that it takes the long time of O(T) for clustering statistics to saturate. This long
saturation time implies that not only the smallest eddies but also larger ones play a
role in the clustering of particles, which has been reported by Cencini et al. (2006)
in terms of other quantities as well. It is also observed in figure 1(c) that the size
of particle voids ranges between O(η) and O(L). This multi-scale nature of particle
voids further implies the role of eddies larger than the Kolmogorov length.

The Stokes number dependence of particle clusters and voids is shown in figure 2,
where the spatial distributions of particles in a thin layer (width 5η) for eight
different Sη are visualized. We plot particle distributions after they become statistically
stationary (t = 2.1T). We can observe quite similar features to those of particle
distributions in two-dimensional turbulence in the inverse energy cascade regime
(Boffetta et al. 2004; Goto & Vassilicos 2006). When Sη � 0.1, the particle distribution
is almost homogeneous and there are no clusters or voids (see figure 2a). When
Sη = O(0.1) there exist only small voids of size O(η) (see figure 2b). As Sη increases,
larger voids appear, but small voids of O(η) still exist (see figure 2c–e). When
Sη = O(0.1T/τη), the size of the largest voids saturates at O(L) (see figure 2f ), and
as Sη increases further, smaller voids become faint (see figure 2g,h).

These observations in figure 2 are qualitatively captured by the pair correlation
function m(�) of particle distribution. This function can be estimated by the formula
(Kostinski & Shaw 2001; Landau & Lifshitz 1980)

1

�

∫ �

0

m(�′) d�′ =
〈(δn)2〉�

〈n〉2
�

− 1

〈n〉�

. (4.1)

Here, 〈n〉� and 〈(δn)2〉� are respectively the average and the variance of the number of
particles inside boxes of size �3. Figure 3 shows m(�), which is numerically estimated by
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Figure 3. Pair correlation function. �, Sη = 0.05; �, 0.1; ×, 0.2; �, 0.5; •, 1; ◦, 2. +, 5. �,
10. (a) Run A. t ≈ 1.8T. (b) Run B. t ≈ 2.1T. Vertical lines indicate � = L.

differentiating the right-hand side of (4.1), for different Stokes numbers and Reynolds
numbers. It is worth mentioning, in passing, that m(�) is independent of the number
Np of particles for all �(>η) if Np is as large as the number N3 of numerical grids.
Figure 3 shows that (i) when Sη is smaller than 0.1, there is no clustering at any length
scale larger than η, (ii) when Sη becomes slightly larger than 0.1, only the smallest-
scale clustering takes place, (iii) as Sη continues to increase, larger clusters appear and
the correlation extends over the integral length L (Notice that m(�) extends over a
wider range in Run B than A. It is confirmed (not shown, see Chen et al. (2006) for
a similar result in the two-dimensional case) that m(�) decays by a power law in the
inertial length scales. Although the functional form in the viscous scales is not clear
in the present simulation, it is consistent with the prediction by Balkovsky et al. 2001,
i.e. a power law with an exponent different from the one in the inertial scales.), (iv)
when Sη increases further, the pair correlation of smaller lengths starts decreasing to
zero and (v) even when Sη is much larger than 1, large-scale correlations survive.

It must be emphasized that particles cluster even when Sη is much larger than 1.
This is in contrast to the general belief that the concentration of particles is most
significant when Sη ≈ 1. The following subsections will bridge the gap between the
conventional belief and the above observations of the Stokes number dependence and
the multiplicity of void sizes.

4.2. Physical picture of inertial particle clustering

As shown by Goto & Vassilicos (2006) for the preferential concentration in two-
dimensional turbulence, the Stokes number dependence of void sizes can be explained
by the hypothesis that, depending on Sη, the size of eddies which play a role changes.
Let T (�) ∼ ε−1/3 �2/3 be the turnover time of eddies of size �. Here, we choose the
constant of proportionality for T (η) to be τη. Then, the hypothesis states that eddies
of size � which satisfy a resonance condition

α < τp/T (�) < β (4.2)

centrifuge out inertial particles because particles promptly follow the slow fluid motion
induced by large eddies with swirling time T (�) � τp , while they completely ignore the
fast fluid motion induced by small eddies with T (�)  τp . Here, the non-dimensional
parameters α and β are determined by the dynamics of the turbulence. A similar
hypothesis based on the resonance between particles and eddies has been accepted by
many authors (see the review by Eaton & Fessler 1994); however it was believed that
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only the resonance of Kolmogorov-scale eddies played a role in particle clustering by
homogeneous turbulence.

Since the figures 2 and 3 are quite similar to their counterparts in two-dimensional
turbulence, it should be natural to apply the above hypothesis in terms of resonant
eddies to the present three-dimensional case. Note that the two-dimensional turbulence
treated in Goto & Vassilicos (2006) is similar to that considered here in the sense that
the enstrophy spectrum in the inertial range is proportional to k1/3 in the both cases.

The two parameters α and β in (4.2) may be estimated by considering the Sη

dependence of m(�). According to figure 3, irrespective of Rλ, m(�) is negligibly small
for all � larger than η when Sη is smaller than 0.1. This implies that when Sη � 0.1
no eddy can contribute to the particle clustering. In other words, at Sη ≈ 0.1 the
smallest-scale eddies start playing a role; therefore we may roughly estimate α ≈ 0.1.
On the other hand, at the length of the smallest eddies (5η, say) when Sη becomes
greater than 2 the correlation function starts to decrease irrespective of the Reynolds
number. This suggests that β ≈ 2. These estimations of α and β are rough, but the
following argument is robust for a small change of these values if their ratio β/α is
not small but O(10) and they are independent of Rλ.

The resonance condition (4.2) means that eddies, if any, which satisfy this condition,
i.e. eddies of sizes between

�min = (Sη/β)3/2 η and �max = (Sη/α)3/2 η, (4.3)

simultaneously contribute to particle clustering. As the inertial range is bounded
by η and L, the minimum length of resonant eddies is max{�min, η}, whereas the
maximum length is min{�max, L}. Therefore, in non-developed turbulence at small
Reynolds numbers, the multi-scale nature of particle clustering is not significant; recall
the relation Rλ ∼ (L/η)2/3. This may be a reason why this nature was not apparent
in the previous studies. The condition (4.2) also means that even if Rλ is infinitely
large, the scale ratio �max/�min of resonant eddies is bounded by (β/α)3/2 ≈ 100.

In summary, since multi-scale coherent eddies co-exist in developed turbulence,
there are continuous length scales between �min and �max. Consequently, clusters of
inertial particles in turbulence at high Reynolds number also possess a multi-scale
nature between these two lengths. This also explains, in terms of the role of eddies
larger than η, why the preferential concentration of particles takes place even when
Sη is much larger than 1.

4.3. Numerical verification of the picture

In order to quantitatively verify this multi-scale nature of particle clustering, we
identify the voids of particles and estimate their volumes by extending the method
suggested by Boffetta et al. (2004) for the two-dimensional case to its three-
dimensional counterpart. First, we divide the whole domain into a set of small
cubes of side length �b (= 5η), and identify the cubes which do not contain any
particles. Then, we check the connections between empty cubes, and estimate the size
of voids by the total volume of connected empty cubes. Note that empty cubes are
well-defined if the number Np of particles is sufficiently large. This is qualitatively
demonstrated in figure 4, where we plot inertial particles within a thin layer for four
different Np . It is observed that even if Np increases, the number density of particles
in clusters increases, and empty regions remain strictly empty. Quantitative arguments
are given in the Appendix.

The probability density functions (PDF) of void volumes are plotted in figure 5 for
different Reynolds numbers. The Stokes number Sη is chosen for the pair correlation
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(a) (b) (c) (d)

Figure 4. Spatial distribution of particles (Sη = 1) inside a thin layer (width 5η) for four dif-

ferent numbers Np of particles. (a) Np = 643, (b) 1283, (c) 2563 and (d) 5123. Run A. Side
length of plots is 3.9L ≈ 240η.
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Figure 5. PDF of void volume of inertial particles. Solid lines indicate V −1.8 power-law form,
dotted vertical lines indicate V = L3. (a) Run A. Sη = 1. Average over 100 snapshots between
t = 1.8T and 2.3T. (b) Run B. Sη = 2 (•), 0.5 (◦) and 0.1 (�). Estimated by a snapshot at
t ≈ 2.1T.

function m(�) to be the broadest in �; i.e. Sη = 1 for Run A and 2 for B. Two other
Sη (0.1 and 0.5) cases are also plotted in figure 5(b) for comparison. We can see that
larger voids exist in the larger Reynolds number flow, and that void volumes are
distributed in a self-similar manner in the range 103η3 � V � L3 (≈105η3 for Run A,
and 107η3 for B), when Sη is appropriate for all eddies (from the smallest eddies
of radius O(10η) and length O(10η) to the largest ones of radius O(L) and length
O(L)) to play a role. As evidence, a clear power law in the range, 103η3 � V � L3,
is observed for such Sη. The exponent is about −1.8 irrespective of Rλ. Incidentally,
if the volume of eddies of size � is approximated by �3 (although this is a quite naive
modelling of the coherent eddies in the present turbulence; see the next subsection)
we can predict the exponent to be −16/9 by extending a model suggested by Goto &
Vassilicos (2006) for two-dimensional turbulence to the present system.

It is also observed in figure 5(b) that as Sη increases the largest size of voids also
increases. This is similar to two-dimensional turbulence (Boffetta et al. 2004) and
consistent with the argument in the preceding subsection (i.e. �max is an increasing
function of Sη).

It is this multiplicity, captured by the PDF (figure 5) of void volumes, that supports
the hypothesis, suggested in the preceding subsection, of the formation of clusters
and voids in turbulence. Multi-scale eddies satisfying (4.2) sweep out particles
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simultaneously, and therefore the void volume PDF obeys a power law reflecting
self-similarity of these eddies.

4.4. Further consideration in terms of coherent eddies

The smallest-scale coherent eddies are known to be thin tubes and their length varies
between η and L although their radii are always the order of the Kolmogorov
length η (see e.g. Goto & Kida 2003). This multiplicity might explain the power-law
behaviour in the range of O(η3) < V < O(η2L) of P (V ) for a small Stokes number
(Sη = 0.1 in figure 5b), in which case only the Kolmogorov-scale eddies are resonant
with the particles. (Incidentally, since the radius of the Kolmogorov-scale eddies is
about 10η and their longest length is about L ≈ 300η (see figure 7f below), the
upper bound of the power-law range for Sη = 0.1 may be estimated as 105η3, which
is consistent with figure 5b.) However, this multi-length nature of thin tubes cannot
fully explain the multi-scale nature of voids observed in figure 5 for larger Stokes
numbers. This is demonstrated in figure 6, where we visualize three (large, medium
and small) voids for Sη = 2. The volumes of these voids are (2.7×106)η3, (4.4×105)η3

and (6.4×104)η3. In figure 6(b), the iso-surfaces of enstrophy are plotted together with
these voids. The iso-surfaces look like thin vortex tubes, the radii of which are of the
order of the Kolmogorov length. Although the size of the small void shown in figure 6
is comparable to the smallest-scale eddies, those of the large and medium voids are
significantly different from the eddies. Therefore, it is not possible to explain the
formation of all voids solely by the effects of the smallest-scale eddies.

In order to verify the picture suggested in § 4.2 in terms of coherent eddies, we
identify eddies of arbitrary size � by iso-surfaces of coarse-grained squared vorticity
ωc(kc)

2 (≡ |ωc(kc)|2), which is obtained by the sharp low-pass filtering of Fourier
modes of vorticity at cutoff wavenumber kc = 2π/�. In figure 7(a), we plot the large
void in figure 6 and the largest eddies (see figure 7b); kc is chosen as 8, i.e. � ≈ 0.4L.
The coincidence of the large void and one of the largest eddies is clearly observed.
This implies that the formation of the largest-scale voids can be explained by the
centrifugal effects of the largest-scale eddies. For the medium void in figure 6, the
clear coincidence of the void and an intermediate-sized eddy can be confirmed in
figure 7(c, d). Furthermore, it is also verified in figure 7(e, f ) that the small void
coincides with one of the smallest-scale eddies. These visualizations in figures 6 and 7
support the hypothesis that the multi-scale nature of void sizes (observed in figure 5)
is due to the multi-scale nature of coherent eddies.

Note, in passing, that two kinds of self-similarities are likely to be embedded in the
tubular vortical structures in this turbulence; one is in the longitudinal lengths of
the vortex tubes (which is relevant to the power law of P (V ) for small Sη), whereas the
other is in their radii (which is captured by the coarse-graining of the vorticity field).
Therefore, the power-law behaviour of P (V ) for large Sη must reflect the overlap of
these two self-similarities of coherent eddies.

To strengthen the qualitative verification developed above based on figures 6 and 7,
we estimate the average coarse-grained squared vorticity (with cutoff wavenumber kc)
〈ωc(kc)

2|V 〉void at the position of particle voids of volumes between ξV and V (here
ξ = 0.5). This conditional average is normalized by the spatial average 〈ωc(kc)

2〉,
and plotted in figure 8(a). It is seen that this conditional average becomes maximum

at a different cutoff wavenumber k̃c(V ) depending on V ; more precisely, k̃c(V ) is a
decreasing function of V as shown in figure 8(b). This supports the suggested hypo-
thesis that larger voids are created due to centrifugal effects of larger eddies.
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(a) (b)

Figure 6. (a) Three typical voids of inertial particles of Sη = 2. Run B. The side length of
box is 1.9L(≈ 630η). Embedded boxes are magnified in figure 7. (b) Voids together with
iso-surfaces of enstrophy (shown in blue). Threshold is chosen as the mean plus four standard
deviations.

(a) (c) (e)

(b) (d) ( f )

Figure 7. (a, b) The large void in figure 6 (green) and iso-surfaces of coarse-grained squared
vorticity ωc(8)2 (shown in blue). (c, d) The medium void in figure 6 and iso-surfaces of
ωc(32)2. The size of the plotted region is 0.76 × 0.72 × 0.60L(≈ 260 × 250 × 200η). (e, f ) The
small void in figure 6 and iso-surfaces of enstrophy. The size of the plotted region is
0.75 × 0.30 × 0.24L(≈ 250 × 100 × 80η). The thresholds of iso-surfaces are chosen as the
mean plus (a, b) two or (c–f ) three standard deviations.

5. Conclusion
The emphasis of the present article is on the hypothesis that not only the smallest-

scale eddies but also larger ones can contribute to the preferential concentration of
inertial particles in developed turbulence. More precisely, all resonant eddies which
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Figure 8. (a) Average coarse-grained squared vorticity (with sharp cutoff low-pass filtering
at wavenumber kc) at the position of particle voids with volumes between 0.5V and V .
Normalized by the spatial average. ×, V = (10η)3; ◦, (20η)3; •, (40η)3; �, (80η)3; �, (160η)3.

Sη = 2. Run B. (b) Wavenumber k̃c(V ) which gives the maximum value of the quantity plotted
in (a).

satisfy (4.2) centrifuge out inertial particles simultaneously. One of the most important
consequences of this hypothesis is that particles can cluster, due to the roles of eddies
of larger scale than η, even when Sη is much larger than 1.

Our simulation at relatively high Reynolds numbers (Rλ ≈ 188) supports this
hypothesis and its consequences. Figure 1 shows that it takes longer than the turnover
time of the largest eddies for particle clustering to reach a statistically stationary state.
This is consistent with the fact that even the largest-scale eddies play a role in the
clustering. Figures 2 and 3 support the statement that particle clustering takes place
even when Sη � 1. It is also observed in figure 2 that the sizes of particle voids
range between η and L when τp is within the inertial time scales of the turbulence.
Furthermore, figures 5 and 7 show that the particle clustering in such cases becomes
self-similar. This self-similar multi-scale nature of particle clustering can be explained
as a reflection of the self-similar multi-scale nature of coherent eddies, which satisfy
the resonance condition (4.2), in developed turbulence. (As a final part, note that it
is well-known that a turbulent velocity field possesses a multifractal nature. Particle
clustering is, therefore, also likely to be multifractal. This implies that particle clusters
might not be self-similar in this strict sense, but the anomalous scaling brings only
a small correction to the self-similarity considered in this article, which is mainly
determined by low-order statistics of the velocity field. The multifractality of particle
clustering is discussed in Bec (2005)).

This research is supported by Grant-in-Aid for Young Scientists from the Ministry
of Education, Culture, Sports, Science and Technology.

Appendix. Dependence of P (V ) on Np

In this Appendix, we consider the dependence of void volume statistics on the
number Np of particles. This dependence seems stronger than the void area statistics
in two-dimensional turbulence, probably because voids are more easily connected in
three-dimensional space. Nevertheless, we expect that the void volume statistics are
well-defined if Np is large enough, since even if we increase Np , empty regions remain
so (figure 4). To confirm this expectation, we plot in figure 9 the PDF P (V ) of void
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Figure 9. (a) The dependence of P (V ) on the number Np of particles. �, Np = 643; �, 1283;

�, 2563; �, 5123; ×, 7683. Run A. (b) PDF estimated for particles with virtual size �p = η.

volumes for five different Np for Run A (the numerical grids number is 1283, and
the grid width is about 1.9η). It is seen that when Np is larger than 2563, P (V ) is
independent of Np . This means that if we track at least Np = 2563 particles, i.e.
eight times more than the number of numerical grids for Run A, in a simulation,
we can capture well-defined void volume statistics. The PDF plotted in figure 5(a) is
estimated using 5123 particles.

However, it is numerically inefficient, or even impossible, to track such a huge
number of particles for turbulence at larger Reynolds numbers. We suggest a
numerical trick to estimate void volume statistics with a small number of particles.
First, based on figure 4, we assume that particles exist only among other particles
even if we increase Np . Then, when we identify the empty cubes of size �b, and
suppose that each particle virtually occupies a spherical volume of radius �p . Here,
�p is chosen smaller than �b. It is confirmed, in figure 9(b), that P (V ) estimated thus
is independent of Np (for all Np larger than 1283 in Run A), and it is the same as
P (V ), except for very large voids V > 104η3, without this artificial procedure but with
large Np(� 5123). This result implies that this procedure indeed estimates P (V ) with
a relatively small number of particles. In figure 5(b), we employ this trick to estimate
PDF for Run B, where Np = 5123 and �p = η (= �b/5) are used.
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